
Brian M. Adams
Sandia National Laboratories

Optimization and Uncertainty Quantification

(with Michael S. Eldred and Laura P. Swiler)

http://endo.sandia.gov/DAKOTA

9th Copper Mountain Conference on Iterative Methods

April 7, 2006

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Uncertainty Quantification and Reliability 
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Capabilities in DAKOTA



Why Uncertainty Quantification (UQ)?

Need to design systems given uncertain/variable material properties, 

manufacturing processes, operating conditions, models, measurements…

Uncertainty must be properly modeled to quantify risk 

and design robust and reliable systems.

Employ a UQ-based approach to optimization under uncertainty (OUU)

– safety factors, multiple operating conditions, local sensitivities insufficient

– tailor OUU methods to strengths of different UQ approaches

OUU methods encompass both:

Aleatory / irreducible

inherent variability with sufficient data

(probabilistic models)

Epistemic / reducible

uncertainty from lack of knowledge

(non-probabilistic models)

design for reliability

(tail statistics: 

probability of failure)

design for robustness

(moment statistics: 

mean, variance)

vs.



…actively design while accounting for 

uncertainty/reliability metrics

Augment with general response statistics su

(e.g. µµµµ, σ, σ, σ, σ, or reliability z/ββββ/p) with linear map

Uncertainty-Aware Design

Rather than designing and then post-

processing to evaluate uncertainty…

Standard NLP

minimize

subject to

� mostly PDE-based, often transient, some agent-based/discrete event models 

� response mappings (fns. and constraints) are nonlinear and implicit

Focus on large-scale simulation-based engineering applications:

minimize

subject to
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DAKOTA Overview

Goal: answer fundamental engineering questions

• What is the best design?  How safe is it?

• How much confidence do I have in my answer?

Challenges

• Software: reuse tools and common interfaces

• Algorithm R&D: nonsmooth/discontinuous/multimodal, 
mixed variables, unreliable gradients, costly sim. failures

• Scalable parallelism: ASCI-scale apps & architectures

Impact: Tool for DOE labs and external partners, broad application 
deployment, free via GNU GPL (~3000 download registrations)

Nominal Optimized

iterative 

analysis…

DAKOTA
optimization, uncertainty quant, 

parameter est., sensitivity analysis

Computational Model
• Black box: Sandia or commercial 

simulation codes

• Semi-intrusive: SIERRA multi-physics,

SALINAS, Xyce, Matlab, ModelCenter

response 

metrics

parameters
(design, UC, 

state)



Iterator

Model 

Strategy: control of multiple iterators and models

Iterator

Model 

Iterator

Model 

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local

Message passing

Hybrid

4 nested levels with
Master-slave/dynamic

Peer/static

Parameters

Model:

Design
continuous

discrete

Uncertain
normal/logn

uniform/logu

triangular

beta/gamma

EV I, II, III

histogram

interval

State
continuous

discrete

Application
system

fork

direct

grid

Approximation

global
polynomial 1/2/3, NN,

kriging, MARS, RBF

multipoint – TANA3

local – Taylor series

hierarchical

Functions
objectives

constraints
least sq. terms
generic

ResponsesInterfaceParameters

Hybrid

SurrBased

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2ndOrderProb

UncOfOptima

LHS/MC

Iterator

Optimizer
ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE

GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGA

Pareto/MStart

CONMIN

NLSSOL

NL2SOLQMC/CVT

Gradients
numerical

analytic

Hessians
numerical

analytic

quasiNLPQL

CenterSFEM

DAKOTA Framework
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• determine variance of outputs based on uncertain inputs (UQ)

• identify inputs whose variances contribute most to output 
variance (global sensitivity analysis)

Uncertainty Quantification

Forward propagation: quantify the effect that 
uncertain input variables have on model output

d

UQ Applications

MEMS device

joint 

mechanics

penetrators

shock physics

GOALS:

Input 

Variables

Computational

Model

Performance

Measures

Given distributions…



Uncertainty Quantification Methods

Active UQ development in DAKOTA (new, developing, planned)

– Sampling: LHS/MC, QMC/CVT, Bootstrap/Importance/Jackknife
Gunzburger collaboration

– Reliability: Evaluate probability of attaining specified outputs / failure

MVFOSM, x/u AMV, x/u AMV+, FORM (RIA/PMA mappings),

MVSOSM, x/u AMV2, x/u AMV2+, TANA, SORM (RIA/PMA)

Renaud/Mahadevan collaborations

– SFE: Polynomial chaos expansions (quadrature/cubiture extensions). 
Ghanem (Walters) collaborations

– Metrics: Importance factors, partial correlations, main effects, and 

variance-based decomposition.

– Epistemic: 2nd-order probability: combines epistemic and aleatory;

Dempster-Schafer: basic probability assignment (intervals); 

Bayesian



Sampling Capabilities

Parameter Studies

• perturb each variable

• “one-off” or one at a time

• simple but inefficient

Design of Computer Experiments (DACE)
and Design of Experiments (DOE)

• Box-Behnken, Central Composite

• factorial and fractional designs

• orthogonal arrays

Also useful for constructing data fit or spanning ROM surrogates.

Output 

Distributions

N samples

measure 1

measure 2

Model

Sampling Methods – typical for forward 
UQ propagation 

• Standard Monte Carlo

• Pseudo-Monte Carlo:  Latin Hypercube 
Sampling (samples from equi-probability 
bins for all 1-D projections)

• Quasi-Monte Carlo (low discrepancy):  
Hammersley, Halton

• Centroidal Voroni Tesselation (CVT):  
approx. uniform samples over arbitrarily 
shaped parameter spaces



Analytic Reliability Methods for UQ

• Define limit state function g(x) for response metric (model 

output) of interest, where x are uncertain variables.

• Reliability methods either

– map specified response levels (perhaps corr. to a 

failure condition) to reliability index β or probability p; or

– map specified probability or reliability levels to the 

corresponding response levels.

Mean Value (first order, second moment – MVFOSM)

determine mean and variance of limit state:

simple 

approximation, 

but widely used 

by analysts



Analytic Reliability: MPP Search

Perform optimization in u-space (std normal space corr. to uncertain x-space) 

to determine Most Probable Point (of response or failure occurring)

G(u)

Reliability Index 

Approach (RIA)

Find min dist to G level curve

Used for fwd map z� p/β

Performance Measure

Approach (PMA)

Find min G at β radius

Better for inv map p/β � z

...should yield better 

estimates of reliability 

than Mean Value 

methods



• Limit state linearizations:  use a surrogate for the limit state during optimization

(also 2nd order approximations – can use full or quasi-Newton Hessians in optimization)

Reliability: Algorithmic Variations

Many variations possible to improve efficiency, including in DAKOTA…

AMV:

u-space AMV:

AMV+:

u-space AMV+:

FORM:  no linearization

• Integrations (in u-space to determine probabilities):

1st-order:

• Warm starting

When: AMV+ iteration increment, z/p/β level increment, or design variable change

What: linearization point & assoc. responses (AMV+) and MPP search initial guess

• MPP search algorithm

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

curvature correction

2nd-order:
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Optimization Under Uncertainty

Opt 

UQ 

Sim 

{d} {Su}

{u} {R
u
}

min

s.t.optimize, accounting for 

uncertainty metrics

(use any of surveyed UQ methods)

nested paradigm

Input design parameterization

• Uncertain variables augment design variables in simulation

• Inserted design variables: an optimization design variable 

may be a parameter of an uncertain distribution, e.g., design 

the mean of a normal.

Response metrics

Combined/other:

pareto tradeoff, LSQ: 

model calibration under 

uncertainty

Reliability:

max/constrain p/β

(minimize failure)

Robustness:

min/constrain σ2

or G(β) range

da

di
ui

ua

M
o
d

el



Sample of RBDO Algorithms

Bi-level RBDO

• Constrain RIA z ���� p/ββββ result

• Constrain PMA p/ββββ ���� z result

RIA

RBDO

PMA

RBDO

Fully analytic Bi-level RBDO
• When nesting UQ analysis, analytic 

reliability sensitivities avoid 

numerical differencing at design 

level (1st order)

If d a distribution

param., then expand:

1st-order 

(also 2nd-order, …)

Sequential/Surrogate-based RBDO:
• Break nesting: iterate between opt & UQ until target is met.

Trust-region surrogate-based approach is non-heuristic.
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Engineering Application Deployment:

Shape Optimization of Compliant MEMS

• Micro-electromechanical system (MEMS) designs are subject to 
substantial variabilities and lack historical knowledge base

• Sources of uncertainty:

– Material properties, manufactured geometries, residual stresses

– Data can be obtained ���� aleatoric uncertainty, probabilistic approaches

• Resulting part yields can be low or have poor cycle durability

• Goals: shape optimization to…

– Achieve prescribed reliability

– Minimize sensitivity to uncertainties (robustness)

• Nonlinear FE simulations

– ~20 min. desktop simulation expense (SIERRA codes: Adagio, Aria, Andante)

– Remeshing during shape design with FASTQ/CUBIT 
or smooth mesh movement with DDRIV

– (semi-analytic) p/ββββ/z gradients appear to be reliable

RF MEMS Switch
Bi-stable 

MEMS Switch



Bi-Stable Switch: Problem Formulation

2 random variables

simultaneously reliable AND robust designs

µµµµ)

µµµµ)

µµµµ)

µµµµ)

)

13 design vars d:

Wi, Li, θθθθi

σ
σ



Bi-Stable Switch: Results (DOT/MMFD)

Reliability: target achieved for AMV+/FORM; target approximated for MV

Robustness: variability in Fmin reduced from 5.7 to 4.6 µµµµN per input σσσσ [µµµµFmin/ββββ]

Ongoing: quantity of interest error estimates ���� error-corrected UQ/RBDO

MVFOSM-

based RBDO

AMV+/FORM-

based RBDO



Conclusions

• Uncertainty-aware design optimization is helpful in engineering 

applications where robust and/or reliable designs are essential.

• The DAKOTA toolkit includes algorithms for uncertainty 

quantification and optimization of computational models .

• DAKOTA strategies enable combination of algorithms, use of 

surrogates and warm-starting, and leveraging massive parallelism.

• Advanced analytic reliability techniques may offer more refined 

estimates of uncertainty than sampling or mean value methods and 

may be more suitable in an optimization context.

• Further UQ and OPT capabilities are in development as is 

deployment to additional applications.

Thank you for your attention!

briadam@sandia.gov

http://endo.sandia.gov/DAKOTA
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